Kansas Department of Health and Environment Proposed Amended Regulation ## Article 35. Radiation ## Part 3. Licensing of Sources of Radiation ## 28-35-201. Schedule F. (a) Single isotope quantities. | Material | Microcuries | |---------------|-------------| | Americium-241 | .01 | | Antimony-122 | 100 | | Antimony-124 | 10 | | Antimony-125 | 10 | | Arsenic-73 | 100 | | Arsenic-74 | 10 | | Arsenic-76 | 10 | | Arsenic-77 | 100 | | Barium-131 | 10 | | Barium-133 | 10 | | Barium-140 | 10 | | Bismuth-210 | 1 | | Bromine-82 | 10 | | Cadmium-109 | 10 | | Cadmium-115m | 10 | | Cadmium-115 | 100 | | Calcium-45 | 10 | | Calcium-47 | 10 | | Carbon-14 | 100 | | Cerium-141 | 100 | |--------------------|-------| | Cerium-143 | 100 | | Cerium-144 | 1 | | Cesium-131 | 1,000 | | Cesium-134m | 100 | | Cesium-134 | 1 | | Cesium-135 | 10 | | Cesium-136 | 10 | | Cesium-137 | 10 | | Chlorine-36 | 10 | | Chlorine-38 | 10 | | Chromium-51 | 1,000 | | Cobalt-58m | 10 | | Cobalt-58 | 10 | | Cobalt-60 | 1 | | Copper-64 | 100 | | Dysprosium-165 | 10 | | Dysprosium-166 | 100 | | Erbium-169 | 100 | | Erbium-171 | 100 | | Europium-152 9.2hr | 100 | | Europium-152 13yr | 1 | | Europium-154 | 1 | | Europium-155 | 10 | | Fluorine-18 | 1,000 | | Gadolinium-153 | 10 | | Gadolinium-159 | 100 | | Gallium-72 | 10 | |---------------|-------| | Germanium-71 | 100 | | Gold-198 | 100 | | Gold-199 | 100 | | Hafnium-181 | 10 | | Holmium-166 | 100 | | Hydrogen-3 | 1,000 | | Indium-113m | 100 | | Indium-114m | 10 | | Indium-115m | 100 | | Indium-115 | 10 | | Iodine-125 | 1 | | Iodine-126 | 1 | | Iodine-129 | 0.1 | | Iodine-131 | 1 | | Iodine-132 | 10 | | Iodine-133 | 1 | | Iodine-134 | 10 | | Iodine-135 | 10 | | Iridium-192 | 10 | | Iridium-194 | 100 | | Iron-55 | 100 | | Iron-59 | 10 | | Krypton-85 | 100 | | Krypton-87 | 10 | | Lanthanum-140 | 10 | | Lutetium-177 | 100 | | Manganese-52 | 10 | |---------------|-----| | Manganese-54 | 10 | | Manganese-56 | 10 | | Mercury-197m | 100 | | Mercury-197 | 100 | | Mercury-203 | 10 | | Molybdenum-99 | 100 | | Neodymium-147 | 100 | | Neodymium-149 | 100 | | Nickel-59 | 100 | | Nickel-63 | 10 | | Nickel-65 | 100 | | Niobium-93m | 10 | | Niobium-95 | 10 | | Niobium-97 | 10 | | Osmium-185 | 10 | | Osmium-191m | 100 | | Osmium-191 | 100 | | Osmium-193 | 100 | | Palladium-103 | 100 | | Palladium-109 | 100 | | Phosphorus-32 | 10 | | Platinum-191 | 100 | | Platinum-193m | 100 | | Platinum-193 | 100 | | Platinum-197m | 100 | | Platinum-197 | 100 | | | | | Plutonium-239 | .01 | |------------------|-----| | Polonium-210 | .1 | | Potassium-42 | 10 | | Praseodymium-142 | 100 | | Praseodymium-143 | 100 | | Promethium-147 | 10 | | Promethium-149 | 10 | | Radium-226 | .01 | | Rhenium-186 | 100 | | Rhenium-188 | 100 | | Rhodium-103m | 100 | | Rhodium-105 | 100 | | Rubidium-86 | 10 | | Rubidium-87 | 10 | | Ruthenium-97 | 100 | | Ruthenium-103 | 10 | | Ruthenium-105 | 10 | | Ruthenium-106 | 1 | | Samarium-151 | 10 | | Samarium-153 | 100 | | Scandium-46 | 10 | | Scandium-47 | 100 | | Scandium-48 | 10 | | Selenium-75 | 10 | | Silicon-31 | 100 | | Silver-105 | 10 | | Silver-110m | 1 | | Silver-111 | 100 | |--------------------------------|-----| | Sodium-24 | 10 | | Strontium-85 | 10 | | Strontium-89 | 1 | | Strontium-90 | .1 | | Strontium-91 | 10 | | Strontium-92 | 10 | | Sulfur-35 | 100 | | Tantalum-182 | 10 | | Technetium-96 | 10 | | Technetium-97m | 100 | | Technetium-97 | 100 | | Technetium-99m | 100 | | Technetium-99 | 10 | | Tellurium-125m | 10 | | Tellurium-127m | 10 | | Tellurium-127 | 100 | | Tellurium-129m | 10 | | Tellurium-129 | 100 | | Tellurium-131m | 10 | | Tellurium-132 | 10 | | Terbium-160 | 10 | | Thallium-200 | 100 | | Thallium-201 | 100 | | Thallium-202 | 100 | | Thallium-204 | 10 | | Thorium (natural) ¹ | 100 | | Thulium-170 | 10 | |---|-------| | Thulium-171 | 10 | | Tin-113 | 10 | | Tin-125 | 10 | | Tungsten-181 | 10 | | Tungsten-185 | 10 | | Tungsten-187 | 100 | | Uranium (natural) ² | 100 | | Uranium-233 | .01 | | Uranium 234 235 <u>Uranium-234-uranium-235</u> | .01 | | Vanadium-48 | 10 | | Xenon-131m | 1,000 | | Xenon-133 | 100 | | Xenon-135 | 100 | | Ytterbium-175 | 100 | | Yttrium-90 | 10 | | Yttrium-91 | 10 | | Yttrium-92 | 100 | | Yttrium-93 | 100 | | Zinc-65 | 10 | | Zinc-69m | 100 | | Zinc-69 | 1,000 | | Zirconium-93 | 10 | | Zirconium-95 | 10 | | Zirconium-97 | 10 | | Any alpha-emitting radionuclide | .01 | |---|-----| | not listed above or <u>any</u> mixture of alpha- | | | emitters of unknown composition | | | Any radionuclide other than an | .1 | | alpha-emitting radionuclide that is | | | not listed above or mixtures any mixture of beta-emitters | | | of unknown composition | | ¹ Based on an alpha disintegration rate of Th-232, Th-230, and their daughter products. (b) Combinations of isotopes. For the purposes of K.A.R. 28-35-180 28-35-180b, when a combination of isotopes in known amounts is involved, the limit for the combination shall be derived by determining, for each isotope in the combination, the ratio between the quantity present in the combination and the limit otherwise established for the specific isotope when not in combination. The sum of such the ratios for all the isotopes in the combination shall not exceed one, which is also referred to as "unity." (Authorized by and implementing K.S.A. 48-1607; effective Nov. 1, 1996; amended P- ² Based on an alpha disintegration rate of U-238, U-234, and U-235.